SRS Lead Tests

Kerry Dunn 94-1 R&D End of Year Technical Review October 22, 2002

Purpose of SRS Lead Tests - 3013 Outer Container

- Outer 3013 Container Lead Surveillance
 - Supports DOE-Complex
 - Ensure Pu containing packages are safe throughout their lifetime
 - Provide predictive capability for required response time
 - Provide input for validation of science based and NDE models
 - Outer 3013 packages on shelf to lead stockpile
 - 94-1 Funding

Background - 3013

- Outer 3013 Container
 - Science based program through MIS
 - Draw from LANL basic corrosion information for test details
 - Long-term surveillance activities throughout storage period
 - Operational surveillance based on DOE 3013
 Standard and Integrated Surveillance Program plan

Program Elements - 3013

- Materials characterization baseline testing
- Design & fabrication of lead surveillance packages
 - Determination of residual stresses
 - Fabrication techniques
- Establish experimental facility setup
- Selection of variables
- Evaluating surveillance containers
- Documentation of results

Baseline Characterization - GTAW-Can

No anomalies found

Knoop Hardness

- a) Base 2 169.3
- b) HAZ 2 176.6
- c) Weld 160.3
- d) HAZ 1 166.1
- e) Base 1 156.4

Lead Surveillance Packages -Residual Stress Determination

• Boiling MgCl₂ Tests GTAW Can

LBW Can

Lead Surveillance Packages - Boiling MgCl₂ Tests Results

As-fabricated can

LBW

Lead Surveillance Packages - Fabrication Techniques

Inner container design & fabrication

Lead Surveillance Packages - Simulated Flaws

EDM technique provides pit formation

Lead Surveillance Packages

- Through wall crack being investigated
- Pursuing pit formation techniques
- Heaters purchased
- Temperature gradient tests with full and 1/2 full containers

Experimental Setup -Storage Rack

Data Acquisition System nearly complete

Selection of Variables

- Materials Moisture
 - Surrogate contents
 - Salt content
 - Metallurgical
- Environment
 - Temperature
 - Humidity
- Test matrix reviewed with MIS group
 - Initial matrix of 42 containers space for 120

Evaluating Surveillance Packages

- Non-destructive (6 month frequency)
 - Provide baseline image of test packages
 - Validation/adaptation of technique
 - Radiography, digital radiography, ultrasonic testing, acoustic emission, piezo-electric sensors
- Destructive (5+ year frequency)

Documentation of Results

- Predictive model for determining which Pubearing 3013 containers are at the greatest risk for failure
 - Combination of LANL and SRS experimental work to develop this
 - (Empirically based science supported)
- Integrating information with operations

Challenges

- Developing NDE techniques transferrable to operations
- Determining most appropriate chloride/fluoride & moisture contents, as well as materials processing parameters
- Obtaining outer containers
- Closure welding outer containers (particularly LBW)
- Integration with operations personnel

